HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers
نویسندگان
چکیده
This work presents a methodology for building interpretable fuzzy systems for classification problems. We consider interpretability from two points of view: (1) Readability of the system description and (2) Comprehensibility of the system behavior explanations. The fuzzy modeling methodology named as HILK (Highly Interpretable Linguistic Knowledge) is upgraded. Firstly, a feature selection procedure based on crisp decision trees is carried out. Secondly, several uniformly distributed strong fuzzy partitions are automatically generated from experimental data for all the selected inputs. For each input, all partitions are compared and the best one according to data distribution is selected. Thirdly, a set of linguistic rules are defined combining the previously generated linguistic variables. Then, a linguistic simplification procedure guided by a novel interpretability index is applied to get a more compact and general set of rules with a minimum loss of accuracy. Finally, partition tuning based on two efficient search strategies increases the system accuracy while preserving the high interpretability. Results obtained in several benchmark classification problems are encouraging because they show the ability of the new methodology for generating highly interpretable fuzzy rule-based classifiers while yielding accuracy comparable to that achieved by other methods like neural networks and C4.5. The best configuration of HILK will depend on each specific problem under consideration but it is important to remark that HILK is flexible enough (thanks to the combination of several algorithms in each modeling stage) to be easily adaptable to a wide range of problems.
منابع مشابه
Modeling Interpretable Fuzzy Rule-Based Classifiers for Medical Decision Support
Decision support systems in Medicine must be easily comprehensible, both for physicians and patients. In this chapter, the authors describe how the fuzzy modeling methodology called HILK (Highly Interpretable Linguistic Knowledge) can be applied for building highly interpretable fuzzy rule-based classifiers (FRBCs) able to provide medical decision support. As a proof of concept, they describe t...
متن کاملLearning Fuzzy Classification Rules from Data
Automatic design of fuzzy rule-based classification systems based on labeled data is considered. It is recognized that both classification performance and interpretability are of major importance and effort is made to keep the resulting rule bases small and comprehensible. An iterative approach for developing fuzzy classifiers is proposed. The initial model is derived from the data and subseque...
متن کاملLearning fuzzy classification rules from labeled data
The automatic design of fuzzy rule-based classification systems based on labeled data is considered. It is recognized that both classification performance and interpretability are of major importance and effort is made to keep the resulting rule bases small and comprehensible. For this purpose, an iterative approach for developing fuzzy classifiers is proposed. The initial model is derived from...
متن کاملAdaptability, interpretability and rule weights in fuzzy rule-based systems
This paper discusses interpretability in two main categories of fuzzy systems fuzzy rule-based classifiers and interpolative fuzzy systems. Our goal is to show that the aspect of high level interpretability is more relevant to fuzzy classifiers, whereas fuzzy systems employed in modeling and control benefit more from low-level interpretability. We also discuss the interpretabilityaccuracy trade...
متن کاملAnalysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 15 شماره
صفحات -
تاریخ انتشار 2011